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We mentioned Plateau’s problem in [1] but did not give a nontrivial example. Let
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denote the incomplete elliptic integral of the first kind and K[m| = F[r/2,m]; the
latter is admittedly incompatible with [2] but we purposefully choose formulas here
to be consistent with the computer algebra package MATHEMATICA. The three basic
Jacobi elliptic functions are defined via
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and two (of nine) others we require are
sc(u,m) = sn(u,m)7 sd(u,m) = M
cn(u, m) dn(u, m)

Our work supplements [3] very closely, even down to the level of notation. The
setting is three-dimensional xyz-space.

0.1. Six Edges of a Cube. Consider a polygonal wire loop with six line seg-
ments:

(0,0,0) — (1,0,0) — (1,0,1) — (1,1,1) — (0,1,1) — (0,1,0) — (0,0,0).

What is the minimal area for any surface spanning this fixed boundary? Equivalently,
what is the outcome of dipping the wire loop in a soap solution?
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Define
po = K[1/4] = 1.6857503548...

and let ¢t = £(£) denote the functional inverse of the elliptic integral

t
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The desired minimal surface is given implicitly by the equation [3]

where 0 < z,y, 2 < p,.
This is as far as Nitsche [3] went in describing his calculations. Solving for z and
rescaling (so that the surface spans the 1 x 1 x 1 cube), we find that
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and the surface area is
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as predicted in [4]. See Figure 1.

0.2. Four Edges of a Regular Tetrahedron. Consider a polygonal wire loop
with four line segments:

(0,0,0) — (1,0,1) — (1,1,0) — (0,1,1) — (0,0,0).

Again, what is the minimal area for any surface spanning this fixed boundary?
With p, as before, let s = F(n) denote the functional inverse of the elliptic integral

do
= 3.5 2,3 4
0 \/ 1 t30°+ 30
The desired minimal surface is given implicitly by the equation [3]

Fy)F(z)+ F(z)F(z)+ F(x)Fly)+1=0
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Figure 1: “Six edges” minimal surface
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where 0 < z,y < p, and —p, < z < 0. Dalpe [5] introduced one correction in the
preceding: the cube has side p,, not 2p,.

This is as far as described in [3]. Solving for z and rescaling (so that the surface
spans the 1 x 1 x 1 cube), we find that

arccos ( o (\/gp()L _%) o (\/gpoy, _%) > ; !

1
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(note multiplication in the numerator and sn in the denominator, unlike before) and
the surface area is

F

z =

3

11—=x

AN A K([3/4]
2//\/1+ <%) + (a—y) dydx = K/ = 1.2792615711...,
0 0

as predicted in [4]. See Figure 2. This example and the first one feature portions of
what is known as the Schwarz D surface (D stands for “Diamond”).

0.3. Two Diagonals and Free Boundaries. Consider the soap film (resembling
a twisted curtain) formed between two skew line segments:

(2,0,0) — (0,2,0) and  (0,0,2) — (2,2,2).

Understanding that two remaining boundaries are unspecified, what is the minimal
area for any surface spanning the diagonals? [6] This is a famous question due to
Gergonne (1816) and answered by Schwarz (1872).

For fixed x > 0, let t = Q(¢, k) and t = R(1), k) denote functional inverses of the
elliptic integrals

¢ ¢
_/ dr ¢_/ dr
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We have, in particular,

Define also
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1.0

Figure 2: Tetrahedral “four edges” minimal surface
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1
/ dr K [—ﬁ]
/ VE+ (1 +26)72 + kT 2v/K

and these two expressions, when set equal, force k = ko = 0.2092861374.... Denote

the former integral by ¢, and latter by 1,; consequently ¢, = 1, = 1.3970394887....
The desired minimal surface is given implicitly by the equation [3]

Q7 — @) R(2 — 1) + Qy — ¢y) =0

where 0 < z,y < 2p, and 0 < 2 < 2¢),. We have introduced two corrections in the
preceding: the upper integration limit of ¢, is 1 (not u(x), which was a typographical
error in [3]) and the denominator underlying K [—7-] is 2¢/k (not merely 2, which
was a computational error in [3]). More on the second correction will be mentioned
shortly.
This, again, is as far as described in [3]. Let
o=tk Mo da= ). e ={ L Bl Dm0

Solving for z and rescaling (so that the surface spans the 2 x 2 x 2 cube), we find that

arccos (Sd (o(z — 1), \o)* —sd (Bo(y — 1), AO)Q) 1 ]
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assuming (y >z and © < 2—y) or (y < z and & > 2 — y); elsewhere on 0 < z,y < 2,
no definition for z is given. The surface area is

11—
AN A
4// 14+ (Z) + (£ dyde = 4.9348196582... = 4 (1.2337049145...)
ox dy
0 O

and a closed-form expression remains open. See Figure 3. We have not attempted to
establish consistency with [7].

z=1+

4:‘10

0.4. Details of Elliptic Functions. We can compute £(¢) and F(n) using re-
sults in [8]:

t
¢ / dr 1F 1—t2\ 1
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Figure 3: “Two diagonals” minimal surface
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since each quartic has four imaginary zeroes; hence

. 1 —cn(2¢,1/4)
V1 +en(2¢,1/4)

_ [1—cn (\/377, -1/3
o= 1+cn (\/gn, -1/3

)
)

and thus

b (5 202)

gives the “six edges” result. From

1+ F(@)F(y)

F(z) =
= " Fo )
we obtain )

1 — (HFE@)IW)
F(@)+F(y) 1
z = —F |arccos s|,—3
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F(2)+F(y)

and, because sn(u, m)? + cn(u,m)? = 1, the “four edges” result follows.
Computing Q(p, k) is somewhat different [9]:

t
_/ dr
v Y
0

1 V144 —2t2 -1
= — K[\(k)] = F |arcsin AN ! , ()
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since the quartic has two real zeroes and two imaginary zeroes. Observe that, when
t = u(k), the second term vanishes. Inverting, we obtain

—Ls ) 1/4 .
e d ((1+4r)"* 0, A())

and therefore

Oy — o) 54 ((1 +45)" (y = ¢y), A(ff))
Qx =y, k) o ((1 +4r) " (z — o), A(ﬁ)) |
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Only the inverse of R(1), k) is required:

t
d ign(t 1 —t? 1
1/;:/ i :Slgn()Flarccos< 2),——]
J VE+ A +26)72+ k7t 2VK 1+t 4k

which generalizes the earlier cases kK = —1 and k = 3/4. Note the specialization ¢ = 1,
as well as the need here to track whether t = —Q(y — ¢y, £)/Q(x — @y, k) is positive
or negative.

0.5. Approximations of Minimal Surfaces. A surprisingly good fit to the
“four edges” surface is provided by the hyperbolic paraboloid

2=z +y—2zY

and the corresponding surface area is

11—=2x 8 5 8 5
2// 1+ (Z) + (&) dyde =1.2807... > 1.2792....
ox dy
0 O

See [10] for more on approximating the Schwarz D surface, which (upon suitable
transformation) should enable a reasonable fit to the “six edges” surface.
Fairly coarse fits to the “two diagonals” surface are provided by

-1 4 -1
z:l—i—y , z =1+ —arctan 4
r—1 s rz—1

if (y>xandz <2—y)or (y<zxzand x> 2—y), and the corresponding surface
areas are 5.1231... and 5.0307..., respectively. We mentioned earlier that Nitsche [3]
mistakenly solved the equation

KNR)] K [-%]
(1+ 4/{)1/4 2

the denominator underlying K [—ﬁ] is missing a factor y/k. It is nevertheless
instructive to follow through to the end. We find x = ko = 6.6061877190... and
consequently @, = 1, = 0.7781217795.... The surface obtained is a minimal surface
(with mean curvature everywhere equal to zero) and correctly spans the diagonals.
The two free contours, however, are not best possible: the surface area for kg is
4.9480..., which is larger than the surface area 4.9348... for k.

The constant 1.9188... appears in [11, 12], 1.2792... in [13, 14] and a rough estimate
for $(4.9348...) in [15]. See [16, 17] for introductory materials, as well as Schwarz’s
complete works [18]. Other polygonal wire loops, with more solutions of Plateau’s
problem, are surveyed in [19].
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0.7. Addendum. Another portion of the Schwarz D surface arises as a soap film
spanning two parallel equilateral triangles with vertices

{(1,-1,-1),(-1,1,-1),(-1,-1,1)} and  {(-1,1,1),(1,—-1,1),(1,1,-1)}.

One triangle is a copy of the other, rotated 60° about its center. Each of the six
edges has length 2v/2 and the perpendicular distance between triangular centers is
2/1/3; the ratio of these is v/6. Define ¢, = K[8/9]. The desired minimal annulus
is given implicitly by [18, 20]

sc(Co¥,s %) sc(Coz, S) + s¢(Cp2, %) sc(Co, %) + sc(Co, S) sc(CoY,s S) +3=0

where —1 < z,y, 2 <1 and its surface area is 6 K[3/4]/K[1/4]. See Figure 4. (This
result contradicts a statement in [21] that, for Schwarz D to appear, the ratio of edge
length to distance should be 24/3.)

A more difficult task is to represent the minimal annulus corresponding to parallel
triangles that are aligned [22, 23, 24, 25, 26], that is, with no rotation. This is a
member of the family of Schwarz H surfaces (H stands for “Hexagonal”). Assistance
on such representations, for a range of perpendicular distances between triangular
centers, and on numerical calculation of surface areas, would be deeply appreciated.
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