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We mentioned Plateau’s problem in [1] but did not give a nontrivial example. Let

F [φ,m] =

sin(φ)Z
0

dτ√
1− τ 2

√
1−mτ 2

denote the incomplete elliptic integral of the first kind and K[m] = F [π/2,m]; the
latter is admittedly incompatible with [2] but we purposefully choose formulas here
to be consistent with the computer algebra package MATHEMATICA. The three basic
Jacobi elliptic functions are defined via

u =

sn(u,m)Z
0

dτ√
1− τ 2

√
1−mτ 2

=

1Z
cn(u,m)

dτ√
1− τ 2

p
mτ 2 + (1−m)

=

1Z
dn(u,m)

dτ√
1− τ 2

p
τ 2 − (1−m)

and two (of nine) others we require are

sc(u,m) =
sn(u,m)

cn(u,m)
, sd(u,m) =

sn(u,m)

dn(u,m)
.

Our work supplements [3] very closely, even down to the level of notation. The
setting is three-dimensional xyz-space.

0.1. Six Edges of a Cube. Consider a polygonal wire loop with six line seg-
ments:

(0, 0, 0)→ (1, 0, 0)→ (1, 0, 1)→ (1, 1, 1)→ (0, 1, 1)→ (0, 1, 0)→ (0, 0, 0).

What is the minimal area for any surface spanning this fixed boundary? Equivalently,
what is the outcome of dipping the wire loop in a soap solution?
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Define
ρ0 = K[1/4] = 1.6857503548...

and let t = E(ξ) denote the functional inverse of the elliptic integral

ξ =

tZ
0

dτ√
1 + τ 2 + τ 4

.

The desired minimal surface is given implicitly by the equation [3]

E(x)E(y) = E(z)

where 0 ≤ x, y, z ≤ ρ0.
This is as far as Nitsche [3] went in describing his calculations. Solving for z and

rescaling (so that the surface spans the 1× 1× 1 cube), we find that

z =
1

2ρ0
F

"
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4

¢
+ cn

¡
2ρ0y,

1
4

¢
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cn
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1
4
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#
, 0 ≤ x, y ≤ 1

and the surface area is

2

1Z
0

1−xZ
0

s
1 +

µ
∂z

∂x

¶2
+

µ
∂z

∂y

¶2
dy dx =

3

2

K[3/4]

K[1/4]
= 1.9188923567...,

as predicted in [4]. See Figure 1.

0.2. Four Edges of a Regular Tetrahedron. Consider a polygonal wire loop
with four line segments:

(0, 0, 0)→ (1, 0, 1)→ (1, 1, 0)→ (0, 1, 1)→ (0, 0, 0).

Again, what is the minimal area for any surface spanning this fixed boundary?
With ρ0 as before, let s = F(η) denote the functional inverse of the elliptic integral

η =

sZ
0

dσq
3
4
+ 5

2
σ2 + 3

4
σ4

.

The desired minimal surface is given implicitly by the equation [3]

F(y)F(z) +F(z)F(x) +F(x)F(y) + 1 = 0
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Figure 1: “Six edges” minimal surface
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where 0 ≤ x, y ≤ ρ0 and −ρ0 ≤ z ≤ 0. Dalpe [5] introduced one correction in the
preceding: the cube has side ρ0, not 2ρ0.
This is as far as described in [3]. Solving for z and rescaling (so that the surface

spans the 1× 1× 1 cube), we find that

z =
1√
3ρ0

F

"
arccos

Ã
cn
¡√
3ρ0x,−13

¢
cn
¡√
3ρ0y,−13

¢
1 + sn

¡√
3ρ0x,−13

¢
sn
¡√
3ρ0y,−13

¢! ,−1
3

#
, 0 ≤ x, y ≤ 1

(note multiplication in the numerator and sn in the denominator, unlike before) and
the surface area is

2

1Z
0

1−xZ
0

s
1 +

µ
∂z

∂x

¶2
+

µ
∂z

∂y

¶2
dy dx =

K[3/4]

K[1/4]
= 1.2792615711...,

as predicted in [4]. See Figure 2. This example and the first one feature portions of
what is known as the Schwarz D surface (D stands for “Diamond”).

0.3. Two Diagonals and Free Boundaries. Consider the soap film (resembling
a twisted curtain) formed between two skew line segments:

(2, 0, 0)→ (0, 2, 0) and (0, 0, 2)→ (2, 2, 2).

Understanding that two remaining boundaries are unspecified, what is the minimal
area for any surface spanning the diagonals? [6] This is a famous question due to
Gergonne (1816) and answered by Schwarz (1872).
For fixed κ > 0, let t = Q(ϕ, κ) and t = R(ψ, κ) denote functional inverses of the

elliptic integrals

ϕ =

tZ
0

dτ√
κ− τ 2 − τ 4

, ψ =

tZ
0

dτp
κ+ (1 + 2κ)τ 2 + κ τ 4

.

Define also

λ(κ) =

√
1 + 4κ− 1
2
√
1 + 4κ

, μ(κ) =

r√
1 + 4κ− 1

2
.

We have, in particular,

μ(κ)Z
0

dτ√
κ− τ 2 − τ 4

=
K[λ(κ)]

(1 + 4κ)1/4
,
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Figure 2: Tetrahedral “four edges” minimal surface



Gergonne-Schwarz Surface 6

1Z
0

dτp
κ+ (1 + 2κ)τ 2 + κ τ 4

=
K
£
− 1
4κ

¤
2
√
κ

and these two expressions, when set equal, force κ = κ0 = 0.2092861374.... Denote
the former integral by ϕ0 and latter by ψ0; consequently ϕ0 = ψ0 = 1.3970394887....
The desired minimal surface is given implicitly by the equation [3]

Q(x− ϕ0)R(z − ψ0) +Q(y − ϕ0) = 0

where 0 ≤ x, y ≤ 2ϕ0 and 0 ≤ z ≤ 2ψ0. We have introduced two corrections in the
preceding: the upper integration limit of ψ0 is 1 (not μ(κ), which was a typographical
error in [3]) and the denominator underlying K

£
− 1
4κ

¤
is 2
√
κ (not merely 2, which

was a computational error in [3]). More on the second correction will be mentioned
shortly.
This, again, is as far as described in [3]. Let

θ0 = (1 + 4κ0)
1/4 ϕ0, λ0 = λ(κ0), ε(x, y) =

½
1 if (x− 1)(y − 1) > 0,
−1 otherwise.

Solving for z and rescaling (so that the surface spans the 2×2×2 cube), we find that

z = 1 +
ε(x, y)

2
√
κψ0

F

"
arccos

Ã
sd (θ0(x− 1), λ0)2 − sd (θ0(y − 1), λ0)2

sd (θ0(x− 1), λ0)2 + sd (θ0(y − 1), λ0)2

!
,− 1

4κ0

#
assuming (y > x and x < 2− y) or (y < x and x > 2− y); elsewhere on 0 ≤ x, y ≤ 2,
no definition for z is given. The surface area is

4

1Z
0

1−xZ
0

s
1 +

µ
∂z

∂x

¶2
+

µ
∂z

∂y

¶2
dy dx = 4.9348196582... = 4 (1.2337049145...)

and a closed-form expression remains open. See Figure 3. We have not attempted to
establish consistency with [7].

0.4. Details of Elliptic Functions. We can compute E(ξ) and F(η) using re-
sults in [8]:

ξ =

tZ
0

dτ√
1 + τ 2 + τ 4

=
1

2
F

∙
arccos

µ
1− t2

1 + t2

¶
,
1

4

¸
,

η =

sZ
0

dσq
3
4
+ 5

2
σ2 + 3

4
σ4
=

1√
3
F

∙
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µ
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¶
,−1
3

¸
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Figure 3: “Two diagonals” minimal surface
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since each quartic has four imaginary zeroes; hence

t =

s
1− cn (2ξ, 1/4)
1 + cn (2ξ, 1/4)

,

s =

s
1− cn

¡√
3η,−1/3

¢
1 + cn

¡√
3η,−1/3

¢
and thus

z =
1

2
F

∙
arccos

µ
1− E(x)2E(y)2
1 + E(x)2E(y)2

¶
,
1

4

¸
gives the “six edges” result. From

F(z) = −1 +F(x)F(y)F(x) +F(y)

we obtain

z =
1√
3
F

⎡⎢⎣arccos
⎛⎜⎝1−

³
1+F(x)F(y)
F(x)+F(y)

´2
1 +

³
1+F(x)F(y)
F(x)+F(y)

´2
⎞⎟⎠ ,−1

3

⎤⎥⎦
and, because sn(u,m)2 + cn(u,m)2 = 1, the “four edges” result follows.
Computing Q(ϕ, κ) is somewhat different [9]:

ϕ =

tZ
0

dτ√
κ− τ 2 − τ 4

=
1

(1 + 4κ)1/4

⎧⎨⎩K[λ(κ)]− F

⎡⎣arcsin
⎛⎝s√1 + 4κ− 2t2 − 1√

1 + 4κ− 1

⎞⎠ , λ(κ)

⎤⎦⎫⎬⎭
since the quartic has two real zeroes and two imaginary zeroes. Observe that, when
t = μ(κ), the second term vanishes. Inverting, we obtain

t =
κ

(1 + 4κ)1/4
sd
³
(1 + 4κ)1/4 ϕ, λ(κ)

´
and therefore

−Q(y − ϕ0, κ)

Q(x− ϕ0, κ)
= −

sd
³
(1 + 4κ)1/4 (y − ϕ0), λ(κ)

´
sd
³
(1 + 4κ)1/4 (x− ϕ0), λ(κ)

´ .
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Only the inverse of R(ψ, κ) is required:

ψ =

tZ
0

dτp
κ+ (1 + 2κ)τ 2 + κ τ 4

=
sign(t)

2
√
κ

F

∙
arccos

µ
1− t2

1 + t2

¶
,− 1
4κ

¸
which generalizes the earlier cases κ = −1 and κ = 3/4. Note the specialization t = 1,
as well as the need here to track whether t = −Q(y − ϕ0, κ)/Q(x− ϕ0, κ) is positive
or negative.

0.5. Approximations of Minimal Surfaces. A surprisingly good fit to the
“four edges” surface is provided by the hyperbolic paraboloid

z = x+ y − 2xy

and the corresponding surface area is

2

1Z
0

1−xZ
0

s
1 +

µ
∂z

∂x

¶2
+

µ
∂z

∂y

¶2
dy dx = 1.2807... > 1.2792....

See [10] for more on approximating the Schwarz D surface, which (upon suitable
transformation) should enable a reasonable fit to the “six edges” surface.
Fairly coarse fits to the “two diagonals” surface are provided by

z = 1 +
y − 1
x− 1 , z = 1 +

4

π
arctan

µ
y − 1
x− 1

¶
if (y > x and x < 2 − y) or (y < x and x > 2 − y), and the corresponding surface
areas are 5.1231... and 5.0307..., respectively. We mentioned earlier that Nitsche [3]
mistakenly solved the equation

K[λ(κ)]

(1 + 4κ)1/4
=

K
£
− 1
4κ

¤
2

;

the denominator underlying K
£
− 1
4κ

¤
is missing a factor

√
κ. It is nevertheless

instructive to follow through to the end. We find κ = eκ0 = 6.6061877190... and
consequently eϕ0 = eψ0 = 0.7781217795.... The surface obtained is a minimal surface
(with mean curvature everywhere equal to zero) and correctly spans the diagonals.
The two free contours, however, are not best possible: the surface area for eκ0 is
4.9480..., which is larger than the surface area 4.9348... for κ0.
The constant 1.9188... appears in [11, 12], 1.2792... in [13, 14] and a rough estimate

for 1
4
(4.9348...) in [15]. See [16, 17] for introductory materials, as well as Schwarz’s

complete works [18]. Other polygonal wire loops, with more solutions of Plateau’s
problem, are surveyed in [19].
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0.6. Acknowledgements. Ulrike Bücking was so kind as to point out two errors
in [3]; I also appreciate correspondence with Ðjur†je Cvijovíc and Stefan Hildebrandt.

0.7. Addendum. Another portion of the Schwarz D surface arises as a soap film
spanning two parallel equilateral triangles with vertices

{(1,−1,−1), (−1, 1,−1), (−1,−1, 1)} and {(−1, 1, 1), (1,−1, 1), (1, 1,−1)}.

One triangle is a copy of the other, rotated 60◦ about its center. Each of the six
edges has length 2

√
2 and the perpendicular distance between triangular centers is

2/
√
3; the ratio of these is

√
6. Define ζ0 = K[8/9]. The desired minimal annulus

is given implicitly by [18, 20]

sc(ζ0y,
8
9
) sc(ζ0z,

8
9
) + sc(ζ0z,

8
9
) sc(ζ0x,

8
9
) + sc(ζ0x,

8
9
) sc(ζ0y,

8
9
) + 3 = 0

where −1 ≤ x, y, z ≤ 1 and its surface area is 6K[3/4]/K[1/4]. See Figure 4. (This
result contradicts a statement in [21] that, for Schwarz D to appear, the ratio of edge
length to distance should be 2

√
3.)

A more difficult task is to represent the minimal annulus corresponding to parallel
triangles that are aligned [22, 23, 24, 25, 26], that is, with no rotation. This is a
member of the family of Schwarz H surfaces (H stands for “Hexagonal”). Assistance
on such representations, for a range of perpendicular distances between triangular
centers, and on numerical calculation of surface areas, would be deeply appreciated.
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Figure 4: “Two twisted triangles” minimal surface
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